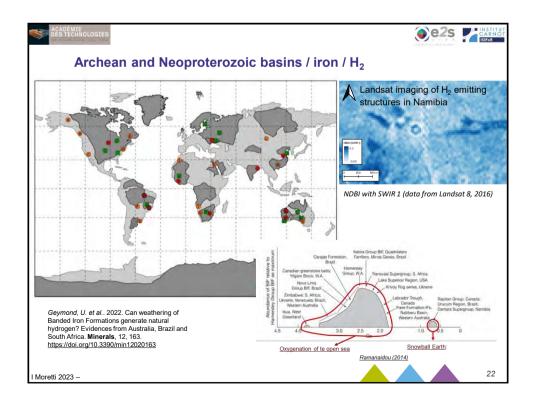
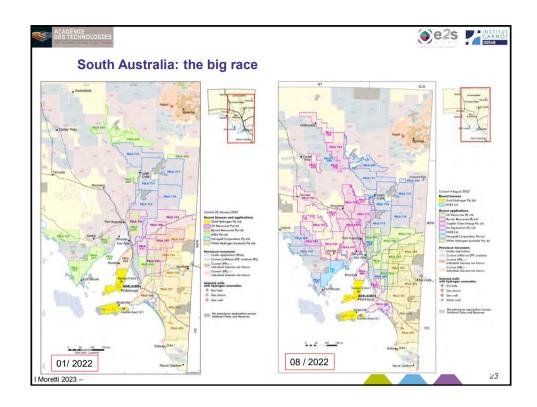
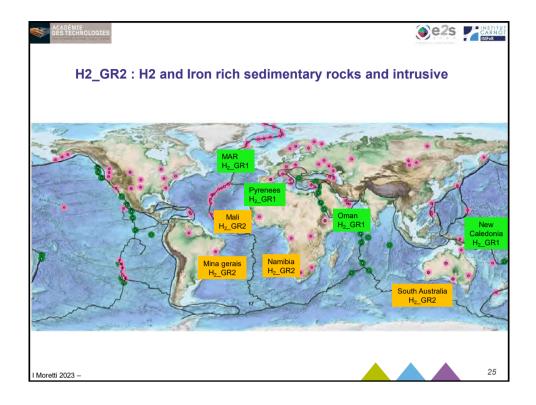
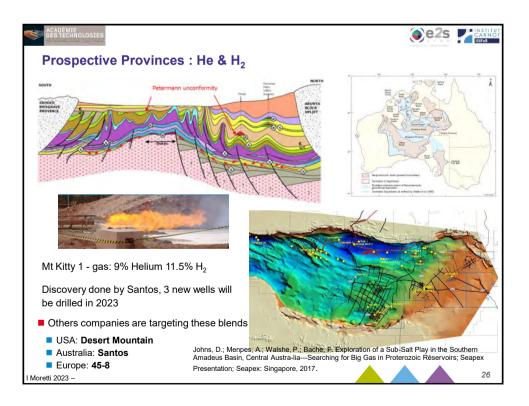
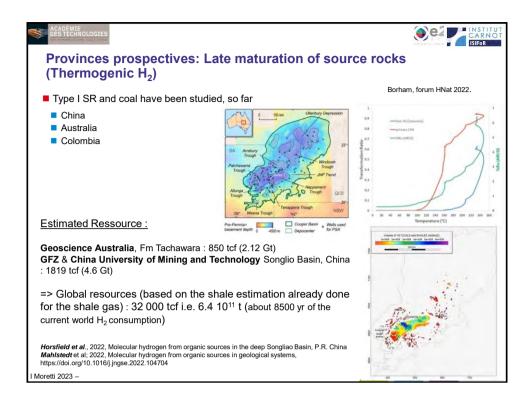

Fe oxidation with geothermal hot fluids	$2 FeO + H_2O = Fe_2O_2 + H_2$
Serpentinization	$3 Fe_2 SiO_4 + 2 H_2 O = Fe_3 O_4 + 3 SiO_2 + 2H_2$
Hydrothermal context but basic	$2 FeS_{(pyrrhotite)} + H_2O = FeS_{2(pyrte)} + FeO + H_2$
³ [№ ₃ Fe ² / ₄] Granite peralkaline	$[*Fe^{3}*Si_{9}O_{22}(OH)_{2}]_{(Arfvedsonite)} + 2H_{2}O$ = 9 [NaFe ³ *Si_{2}O_{6}]_{(Aegirine)} + 6SiO_{2} + 2[Fe_{3}O_{4}]_{(Magnétite)} + 5H_{2}
Volcanic	H_2S H $(2H_2O) = SO_2 + 3H_2$
Radiolysis	(H_20) α, β, γ
Mechanoradical	(H ₂ 0)+
Open question: (NH ₃)	
Late maturation of Organic matter	
Major recent change in our understa oxidation could be fast at rather low	nding: The reaction of iron oxide temperature and generate a lot of H2

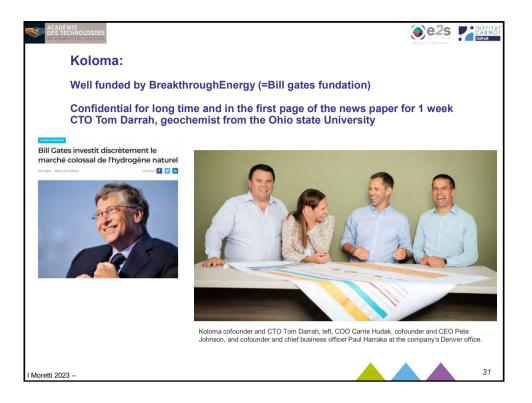


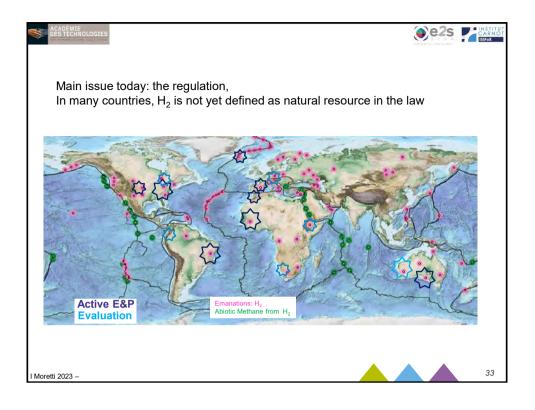


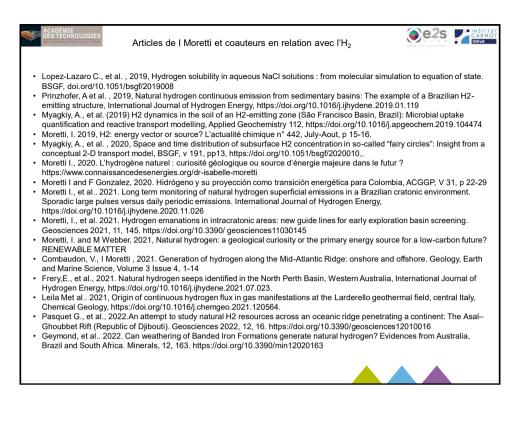



ACADÉMIE DES TECHNOLOGIES							
Yorke pe	nins	ula					
Original values			Yorke I	Peninsu	ıla		
Depth (m)	240	240	262	262	262	508	
	0.8	0.2	0.8	0.8	0.6	0	
	0	0	3.2	2.4	3	1.2	
H ₂ (%)	74	76	60	64.4	60	84	
	7.5	7.5	5.4	7	5.6	0	
	17.7	16.3	30.6	25.4	30.8	14.8	
Air corrected values							
	0,8	0,2	1,0	0,9	0,7	0,0	
l ₂ (%)	74,0	76,0	71,3	73,1	70,5	89,3	
	7,5	7,5	6,4	7,9	6,6	0,0	20 km
N ₂ (%)	17,7	16,3	21,3	18,1	22,3	10,7	South Central Australia – Yorke Peninsula
Moretti, I., et al. 2021. Hyc				ratonic a	areas		۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲
https://doi.org/10.3390/ ge							Equivalent disinfetters in meters
etti 2023 –							






ACADÉMIE DES TECHNOLOGIES	
H ₂ sources: mainly H ₂ O	
Fe oxidation with geothermal hot fluids	$2 FeO \left(H_2 O \right) = Fe_2 O_2 + H_2$
Serpentinization	$3 Fe_2 SiO_4 + (2 H_2 O) = Fe_3 O_4 + 3 SiO_2 + 2 H_2$
Hydrothermal context but basic	$2 FeS_{(pyrrhotite)} + H_2 O = FeS_{2(pyrte)} + FeO + H_2$
Granite peralkaline	$\begin{split} &e^{2} \cdot Si_{g} \mathcal{O}_{22}(OH)_{2} \big _{(Arf ved zonite)} + 2 H_{2} \mathcal{O} \big \\ &= 9 \big[NaF e^{3} \cdot Si_{2} \mathcal{O}_{b} \big _{(Aegirine)} + 6 Si \mathcal{O}_{2} + 2 \big[Fe_{2} \mathcal{O}_{4} \big]_{(Magnitite)} + 5 H_{2} \big] \end{split}$
Volcanic	(H_2S) $H(2H_2O) = SO_2 + 3H_2$
Radiolysis	(H_20) α, β, γ
Mechanoradical	(H ₂ 0)+
Open question:(NH ₃)	
Late maturation of Organic matter	>
Modified from Klein et al., 2020 I Moretti 2023 –	0 Elements, Vol. 16, pp. 19–24



Articles de l Moretti et coauteurs en relation avec l'H ₂	RNOT
Combaudon, V., et al 2022. Natural hydrogen emissions in Iceland and comparison with the Mid-Atlantic Ridge. Internation Journal of Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2022.01.101 0 Leila M., et al 2022. Controls on generation and accumulation of blended gases (CH4/H2/He) in the Neoproterozoic Amadeus Basin, Australia. Marine and Petroleum Geology 140, 105643. doi.org/10.1016/j.marpetgeo.2022.105643 Pasquet, G., et al., 2022. Génération d'hydrogène par les jeunes croûtes océaniques : les cas de l'Islande et de la zone des Afars. Géologues 213, p 74-78. Moretti, I., et al., 2022. Natural hydrogen emanations in Namibia : field acquisition and satellite image analysis. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.08.135 Lévy D., et al., 2022 Successive phases of serpentinization recorded in the ophiolite of Sivas (Turkey), from oceanic crust accretion to post-obduction alteration. BSGF. https://doi.org/10.1051/bsgf/202015 Pasquet, G., et al 2023. Natural hydrogen potential and basaltic alteration in the Asal–Ghoubbet rift, Republic of Djibouti, BSGF. Geymond, U., et al. 2023. Reassessing the role of magnetite during natural hydrogen generation. Frontiers in Earth Science DOI 10.3389/feart.2023. Subduction and hydrogen release: the case of Bolivian Attiplano. Geosciences 2023, 13, 109. https://doi.org/10.3281/zenodo.8108239 Aimar L., et al., 2023, Natural hydrogen seeps or salt lakes: how to make a difference? Grass Patch example, Western. Frontiers in geoscience. V 11 https://doi: 10.3389/feart.2023.1236673. Lévy, D., et al., 2023, Natural hydrogen seeps or salt lakes: how to make a difference? Grass Patch example, Western. Frontiers in geoscience. V 11 https://doi: 10.3389/feart.2023.1236673. Lévy, D., et al., 2023, Natural Hydrogen seeps or salt lakes: how to make a difference? Grass Patch example, Western. Frontiers in geoscience. V 11 https://doi: 10.3389/feart.2023.1236673. Lévy, D., et al., 2023, Natural Hydrogen seeps or salt lak	
Journal of Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2022.01.101 0 Leila M., et al 2022. Controls on generation and accumulation of blended gases (CH4/H2/He) in the Neoproterozoic Amadeus Basin, Australia. Marine and Petroleum Geology 140, 105643. doi.org/10.1016/j.marpetgeo.2022.105643 Pasquet, G., et al., 2022. Génération d'hydrogène par les jeunes croûtes océaniques : les cas de l'Islande et de la zone des Afars. Géologues 213, p 74-78. Moretti, I., et al., 2022, Natural hydrogen emanations in Namibia : field acquisition and satellite image analysis. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.08.135 Lévy D., et al., 2022 Successive phases of serpentinization recorded in the ophilite of Sivas (Turkey), from oceanic crust accretion to post-obduction alteration. BSGF. https://doi.org/10.1051/bsgf/20220105 Pasquet, G., et al 2023. Natural hydrogen potential and basaltic alteration in the Asal–Ghoubbet rift, Republic of Djibouti, BSGF. Geymond, U., et al. 2023. Reassessing the role of magnetite during natural hydrogen generation. Frontiers in Earth Science DOI 10.3389/feart.2023. 1169356 Moretti I., et al., 2023. Subduction and hydrogen release: the case of Bolivian Altiplano. Geosciences 2023, 13, 109. https://doi.org/10.3390/geosciences13040109 Gaucher, E., et al., 2023, Natural hydrogen seeps or salt lakes: how to make a difference? Grass Patch example, Western. Frontiers in geoscience. V 11 https://doi: 10.3389/feart.2023.1236673. Lévy, D., et al., 2023, Natural hydrogen seeps or salt lakes: how to make a difference? Grass Patch example, Western. Frontiers in geoscience. V 11 https://doi. 10.3389/feart.2023.1236673. Lévy, D., et al., 2023, Natural hydrogen seeps or salt lakes: how to make a difference? Grass Patch example, Western. Frontiers in geoscience. V 11 https://doi. 10.3389/feart.2023.1236673. Lévy, D., et al., 2023, Natural hydrogen seeps or salt lakes: how to characterize a play, STEP, https://doi.org/10.2516/stet/2023021 Moretti, I., 2023.	